главная | вентиляция | кондиционирование | отопление | статьи | библиотека | новости | карта сайта| о нас

Проектирование систем организации воздухообмена
залов зданий зрелищного назаначения

Fujitsu (Fujitsu General Co. Ltd.)

General (Fugitsu General Co. Ltd.)

Daikin

McQuay

LG

Midea

Systemair (Kanaflakt)

Ostberg

Remak

C&H

S&P

Vortice


При проектировании зрелищного здания самым ответственным и наиболее трудным решением, как с архитектурных позиций, так и в отношении устройства инженерных систем микроклимата помещений, является зрительный зал со сценой. Эффективно действующая система микроклимата зрительного зала, создающая и постоянно поддерживающая нормативные параметры комфортной воздушной среды (tв, °C; jв, %%; Vв, м/с) в рабочей зоне, зависит от многих факторов, которые известны специалистам-проектировщикам. Определение необходимого количества приточного и удаляемого воздуха помещения и их параметров для ассимиляции вредностей микроклимата зала, а также получение этих параметров при обработке наружного воздуха в вентиляционных приточных установках – кондиционерах – вполне решаемая задача. А вот выбор эффективно действующей в эксплуатационный период схемы системы воздухообмена помещения с целью создания и поддержания этих параметров (и особенно – подвижности) – задача трудно решаемая. Это связано с тем, что схема системы воздухообмена помещения должна сочетаться с архитектурно-композиционным решением зала и его декором, а кроме того, при ее выборе одновременно приходится учитывать, что характер и скорость перемещения воздуха в зале зависит от следующих факторов:

  • вида и степени равномерности выделения вредностей микроклимата во всем объеме зала;
  • разности температур воздуха приточных струй и рабочей зоны зала;
  • количества и скорости выпуска приточного потока;
  • степени загрузки помещения зрителями;
  • места расположения и конструктивного решения приточных и вытяжных устройств.

Высокое качество этого решения является синтезом архитектурных, технологических и инженерных средств, их единым одновременно решаемым произведением. Установлено, что эффективному действию систем организации воздухообмена помещений способствуют малые дозы рассредоточенных потоков приточных и противоположно размещенных в объеме помещения вытяжных устройств. До середины прошлого столетия в России и в других государствах при решении микроклимата зрительных залов преимущественно применялись схемы с верхней подачей воздуха (выше рабочей зоны). В настоящее время за рубежом в новых театрах и даже при реконструкции старых), как правило, применяют схему с нижней подачей (в рабочую зону), считая, что преимущества этой схемы в любом случае бесспорны и значительны. Схема с рассредоточенной нижней раздачей приточного воздуха, несмотря на то, что она несколько усложняет конструкцию пола зала, требуя устройства под ним большого объема – камеры статического давления (КСД), а кроме того, не допускает высоких температур и скоростей приточного выпуска, обладает эффективным действием, подтвержденным целым рядом исследований. Эффективность достигается благодаря следующим факторам:

  • ограничению высоты обслуживания зоны зала (до 2 м от уровня пола);
  • движению потоков приточного воздуха в одном направлении со свободными конвективными потоками удаляемого нагретого зрителями воздуха и другими источниками, что ведет к “промыванию” всего объема зала и к уменьшению турбулентности;
  • поступлению непосредственно в зону размещения зрителей, актеров, оркестрантов наружного воздуха, подготовленного приточной установкой (кондиционером), а не разбавленного вредностями зала;
  • равномерному душированию всех рабочих зон зала мелкими дозами воздуха;
  • обеспечению практической независимости эффективного действия системы от объемно-планировочного решения и степени заполнения зала зрителями;
  • улучшению качества обработки (снижению запыленности) наружного воздуха, подаваемого в помещение, и выравниванию его скорости за счет применения камеры статического давления.

При определении производительности системы воздухообмена зала, решенной по схеме “снизу-вверх”, в расчеты на ассимиляцию теплоизбытков зала вводят лишь лучистое тепло от освещения, скрытое и часть явного тепла, выделяемого людьми, и не учитывают явное тепло осветительных устройств (в том числе – софитов), а также часть явного тепла людей и тепло, поступающее в зал извне через наружные ограждения. Таким образом, системы воздухообмена залов, решенные по схемам “снизу-вверх” или “зональная” (с тем же направлением подачи и удаления воздуха в многоярусном зале), являются более рентабельными и выгодными. В европейских государствах системы воздухообмена с подачей воздуха в рабочую зону и с верхним удалением нашли широкое применение не только при новом строительстве и реконструкции зданий, но и при восстановлении зданий, разрушенных войной. Так, в Германии при новом строительстве зрелищных зданий: театра оперы и балета г. Лейпцига, Дворца культуры г. Дрездена и Дворца съездов г. Берлина, при реконструкции Немецкого театра г. Веймара, Театра оперы и балета г. Берлина, а также при восстановлении из руин театра оперы и балета г. Дрездена – были применены системы с подачей воздуха “снизу-вверх” через КСД. В театре оперы и балета г. Дрездена, зрительный зал которого всегда был многоярусным, восстановление выполнялось по первоначальному проекту и тщательно контролировалось его соответствие. Тем не менее, чтобы создать в каждом ярусе КСД определенной высоты, было принято решение о сокращении с этой целью одного яруса. В Венгрии при строительстве нового театра в г. Дюор и при восстановлении в Кремлевском замке г. Будапешта театра под названием “25-й театр” были запроектированы и установлены системы воздухообмена, решаемые по схеме “снизу-вверх”. В Чехословакии при реконструкции Словацкого национального театра г. Братиславы и при восстановлении Народного театра г. Праги вместо ранее существующих систем, решенных по схеме “сверху-вверх-вверх”, были запроектированы системы по схеме “снизу-вверх-вверх”. Во всех перечисленных театрах раздача воздуха из КСД в рабочие зоны зала осуществляется или с помощью воздухоразделяющих устройств – “грибков”, или перфорированных (с диаметром отверстий – 4,0 мм) “диффузоров”, расположенных под креслами зрителей, а порой входящих в конструкцию кресел. Результаты действия такого решения подачи воздуха в зрительный зал Дворца культуры г. Дрездена приводятся в графике (см. рис. 3). В других случаях раздача воздуха из КСД осуществлялась посредством решеток, установленных на отверстиях в вертикальных плоскостях ступеней каждого ряда амфитеатра, или с помощью “климадранта” – устройства, запатентованного немецкой фирмой “Kesslen und Luch”. Это устройство, сделанное в спинке-“канале” каждого кресла наподобие эжекционного доводчика, имеет камеру первичного воздуха с соплом, рециркуляционное отверстие (ближе к полу с обратной стороны спинки кресла), защищенное регулируемой решеткой, камеру смешения воздуха, изолированную шумопоглощающей облицовкой, и в верхней горизонтальной плоскости спинки кресла – выпускные щели с регулируемыми решетками. Исследования работы “климадранта”, проведенные в одном из залов Дворца съездов г. Берлина, показали, что струи первичного воздуха, поступающего из КСД, выходят из сопла в камеру смешения с очень большой начальной скоростью, вовлекают рециркуляционный воздух рабочей зоны зала и, смешиваясь с ним, выходят вверх помещения со скоростью ~0,7–0,8 м/с. На расстоянии примерно 600–700 мм от верхней плоскости спинки кресла, в направлении от струи, скорость гасится и становится равной скорости естественных конвективных потоков воздуха зала. Такое решение раздачи воздуха, нарушая “монотонность” климата, обеспечивает гарантию от жалоб зрителей на “дутье”, удовлетворяет желание каждого зрителя, создавая индивидуальную микроклиматическую зону.

В залах зрелищных зданий с большим количеством посадочных мест, к примеру, таких как Кремлевский Дворец Съездов (6 180 посадочных мест) и ему подобных, применение воздухораздающего устройства “климадрант” было бы рациональным решением.

Во всех залах зрелищных зданий, обследованных автором данной статьи, из-за неправильного выбора схем организации воздухообмена и их воздухораздающих устройств, рабочие зоны не обеспечены нормативной подвижностью (0,3–0,5 м/с) и – как следствие – нормативной температурой воздуха. В качестве примера рассмотрим несколько из них. Зрительный зал театра “Современник” (Москва) рассчитан на 800 посадочных мест. Он имеет партер на 630 мест (в том числе 170 мест в подбалконной части) и балкон на 165 мест. В техническом этаже над фойе размещены 2 центральных кондиционера производительностью 20 000 м3/ч (каждый) и 2 рециркуляционно-вытяжные установки производительностью 13 000 м3/ч (каждая). Механическая вытяжная установка с забором воздуха через осветительную галерею и через 30 отверстий в потолке зала (для подвески 30 люстр), производительностью 8 000 м3/ч, размещены на чердаке. Естественное удаление воздуха через противопожарный клапан сцены предусматривало проектом 15% количества воздуха от подаваемого в зал. Распределение приточного воздуха зала по проекту было следующим: - 18 700 м3/ч воздуха должно подаваться в зал посредством 10 решеток (по 5 штук с каждой стороны зала) на высоте ~7,0 м от уровня пола партера или ~3,0 м от уровня балкона; - 18 300 м3/ч воздуха должно подаваться в зал посредством двух щелевидных решеток, расположенных в торцевой стене зала под балконом на высоте 3,0 м от уровня пола паркета).

Рециркуляционно-вытяжные решетки системы “сверху-вниз-вверх” были запроектированы под ложами балкона симметрично с каждой стороны зала и вмонтированы (подобно приточной раздаче) в горизонтальный канал, образованный кривизной угла сопряжения стен и потолка. Температурный перепад между внутренним и приточным воздухом для подачи в партер был принят равным 8 градусам, для подачи на балкон – 4 градусам, и поэтому в системе установлены доводчики. После введения театра в эксплуатацию системы инженерного обеспечения микроклимата помещений театра подвергались испытаниям и наладке. В результате этих работ были вскрыты многие недостатки, в том числе потоки воздуха боковой раздачи взаимодействовали со струями, выходящими с большой скоростью из-под балкона, что приводило к интенсивному притоку устремленного к сцене воздуха, отрицательно воздействующего на зрителей. Подвижность воздуха в рабочих зонах партера (по центральной оси зала) достигала местами до 4,5 м/с, и вместе с тем центральная часть балкона и последние ряды балкона и подбалконной зоны были застойными.

Специалистами “Проектпромвентиляции” (Москва) и ВНИИОТа (Санкт-Петербург) были проведены расчеты следующих воздухоразводящих устройств для замены существующих: - плафонов типа ВДГИ и ВДУМ с их размещением не в существующих отверстиях притока, а на потолке; - направляющих плоскостей, устанавливаемых в существующих 10-ти проемах боковых стен зала, способствующих созданию вместо прямоточных струй веерных. Расчеты показали, что перечисленные варианты не могут привести к желаемым результатам. При применении последнего варианта оказалось, что веерные струи раскачивают светильники (30 штук), которыми плотно завешена центральная часть потолка зала. Кроме того, этот вариант мог бы создать в рабочей зоне нормативную подвижность, но только при уменьшении количества приточного воздуха на ~40% от расчетного, требуемого на ассимиляцию теплоизбытков зала. Подобная картина наблюдалась при такой же схеме воздухообмена “сверху-вниз-вверх” (и еще хуже – при схеме “сверху-вверх-вверх”) во всех зрительных залах, в том числе в Большом зале (на 6 180 посадочных мест) Кремлевского Дворца Съездов. В центральной части партера зрительного зала Дворца Съездов подвижность воздуха (при расчетной производительности приточной системы – 370 000 м3/ч) составляла от 2,5 до 4,5 м/с, что приводило к частым нареканиям зрителей. В результате работ, проведенных наладчиками института “Проектпромвентиляция” в 1962, 1966, 1971, 1978 годах, производительность системы кондиционирования воздуха зала была понижена до 266 000 м3/ч (ряд воздухораздающих решеток – заглушены, а вытяжных систем – на 10%. Несмотря на это, желаемых результатов не было достигнуто, и в отчетах наладчиков было отмечено, что “...полная ликвидация недостатков микроклимата зала КДС не представляется возможной без изменения схемы организации воздухообмена”, и добавлено, что “...к сожалению, эти недостатки являются допустимыми в практике проектирования залов больших объемов”. Позднее – в 1981, 1984, 1987 годах – научно-исследовательским институтом “ЦНИИЭП инженерного оборудования” были выполнены научно-исследовательские работы на тему “Разработка и экспериментальная проверка схем воздухораспределения, обеспечивающих улучшение микроклимата в помещениях общественных зданий”. Но даже после этих работ в зрительном зале КДС не были получены требуемые условия комфортной среды.

При всех положительных свойствах систем организации воздухообмена, решенных по схеме “снизу-вверх” (или “снизу-вверх-вверх”), в России с 1940 года при строительстве зрелищных зданий эти системы не применялись. До 1940 года в России эти схемы были лишь в 2-х зданиях – в 1895 году в Большом зале Консерватории (Москва) и в 1940 году в Концертном зале им. П. И. Чайковского (Москва), которые в настоящее время требуют капитального ремонта из-за их старости и частичного разрушения в военные годы. Описание этих систем очень хорошо и полно изложено в книге инженера Гипротеатра К. С. Елизарова “Теплоснабжение, вентиляция и кондиционирование в театрах”, выпущенной в свет в 1959 году.

На предыдущую страницу

При использовании материалов сайта ссылка на http://www.osnova.od.ua обязательна

©2003-2017 ООО "Основа"
главная | вентиляция | кондиционирование | отопление | статьи | библиотека | новости | карта сайта| о нас
Rambler's Top100 Рейтинг@Mail.ru ?iaaen oeoe?iaaiey